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The response of a compliant coating to pressure fluctuations due to an unsteady boundary
layer flow and the effect of the response on the stability of the flow field are examined A
pseudospectral solution of the Navier-Stokes equations 1s coupled to a fimte element
calculation of the behavior of the comphant matenal In particular, the effect of material
response on the growth rate of a Tollmen-Schlichting type instability 1n an unstable boun-
dary layer 1s examined Results are presented for three matenals, a soft polyvinylchlonide
(PVC), a stiffer PVC, and a two-layer matenal consisting of a thick layer of soft PVC covered
by a thin layer of neoprene <« 1988 Acadermc Press, Inc

INTRODUCTION

A numerical method for studying the interaction between an unstable boundary
layer flow and a compliant surface is considered here Since Kramer first
demonstrated a reduction in the skin-friction drag on an underwater vessel due to
interaction of the surrounding fluid with a compliant coating, this interaction has
been investigated theoretically, experimentally, and computationally. Originally
inspired by observations of the swimming efficiency of dolphins [1, 2], Kramer’s
experiments [3-5] did indeed result in significant reduction of the drag on towed
cylinders. Two possible mechanisms for this reduction in drag have since been
suggested. The compliant material might interact with a fully developed turbulent
boundary layer in such a way as to reduce the intensity of the turbulence, or the
matertal might interact with a laminar boundary layer in such a way as to delay the
transition to turbulence

To date, most of the experimental work has focused on the turbulent interaction,
with primarily negative results. This is true of studies done using coatings similar to
those developed by Kramer [6-9] as well as studies done using simpler single or
double-layer coatings [10-14]. A review of the experimental work prior to 1984 has
been presented by Gad-el-Hak er al. [11] and in the paper by Carpenter and
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Garrad [15], which contains a further discussion of Kramer's experiments and of
attempts to duplicate Kramer’s experiments.

Much of the numerical work that has been done has also focused on the interac-
tion between a compliant coating and a fully developed turbulent flow. These
investigations have included both noninteractive studies of material response, and
quasi-interactive attempts to anticipate the response of a membrane or Voigt solid
and couple the resulting velocities back 1nto the flow field. Buckingham er al. [16]
calculated the response of a variety of materials to Monte-Carlo generated random
pressure fields, without considering the effect of the resultant interface displace-
ments and velocities on the flow field. This work, which makes use of a turbulent
wall pressure model developed by Ash [17] and Ash and Khorrami [18], provides
a numerical counterpart to the theory first published by Phillips [19] on the
generation of water waves by a random pressure fluctuation. Such an approach has
two advantages: complex multi-layered and internally structured coatings can be
characterized in terms of amplitude and frequency response, and flow-induced
pressures are not restricted to those resulting from Tollmien—-Schlichting type
instabilities. On the other hand, material response alone 1s not an indicator of the
ability of a particular coating to reduce the turbulent energy in the surrounding
flow field. Before such data can be interpreted in terms of drag-reduction
capabilities, the effects of amplitude, frequency, and phase response on 1nstabulities
or on the turbulent bursting phenomenon must be better understood. Among recent
attempts to understand these effects are numerical studies that assume a certain
response of a membrane or Voigt solid and couple this response back into the flow
field. The “smart-wall” studies by McMurray and Metcalfe [20] and Riley er al.
[21] have shown the ability of wall motion to transfer energy from higher to lower
wavenumber modes. In earlier work Orszag [22] computed the velocity profile
following a turbulent burst assuming a pressure pulse due to the burst. Results were
shown to depend on the wavelength of the wall motion.

Recently attention has turned from the interaction of a coating with a fully
developed turbulent boundary layer to the possibility of delaying transition of the
boundary layer from laminar to turbulent. Indeed, Kramer believed that this delay
was responsible for the drag reduction that he was able to achieve. Carpenter and
Garrad [15] suggest that the faillure of later experiments (those with coatings
similar to Kramer’s) to duplicate Kramer’s results may be due to the unsuitability
of these experiments for investigating transition. Using a model representing a
modified potential flow over a single-layer 1sotropic Voigt material, Duncan,
Waxman, and Tulin [23] derived analytically a dispersion relation for two-
dimensional wavetrains on the interface. Although the purpose of their paper was
to describe the effects of damping on wave propagation and to shed hght on
experimental results, they did conclude that the onset velocity for Tollmien—
Schlichting instabilities, classified as class A nstabilities by Benjamin [24], was
higher for laminar boundary layers than for turbulent ones.

In this paper, we consider a numerical method for studying the interaction
between a Tollmien-Schhichting wave and a variety of compliant coatings. A
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pseudospectral solution of the incompressible Navier-Stokes equation is coupled
through the boundary conditions to a finite element calculation of the response of a
linear visco-elastic solid. The pseudospectral solution employed is a time-splitting
method, with the compliant wall boundary conditions enforced during both the
pressure and viscous steps. Since the method does not force conservation of mass,
errors introduced in the near-wall region due to the time-sphtting quickly become
evident 1n calculation of the divergence. Iteration of both the pressure and viscous
corrections, as described below, is used to minimize this error. We believe that this
method can be useful in the study of flow over a greater variety of material
configurations than can be easily modeled analytically

1. INrTIAL CONDITIONS

Transition will be delayed if the compliant coating can 1n effect raise the critical
Reynolds number of the boundary layer flow. This corresponds to a shifting of the
neutral stability curve of the Orr-Sommerfeld equation, describing the evolution of
a small disturbance (a Tollmien—Schlichting wave) in the flow. The shift in the
neutral stability curve due to a comphant coating was calculated analytically by
Benjamin [257 using a single parameter, which he called the response coefficient, to
represent the properties of the compliant material. Stability curves were calculated
numerically by Landahl [26], Kaplan [27], and by Landahl and Kaplan [28] for
a spring-backed membrane with damping. In addition to reproducing the results of
Kaplan and Landahl and Kaplan, Garrad [29] and Carpenter and Garrad [15]
have used this method to examine the stability properties of Kramer-type coatings.
They modeled a Kramer-type surface as an elastic plate backed by a viscous fluid
and supported by springs, which were in turn modeled by an elastic foundation (see
also Ref [30]). Their results indicate that there may indeed be Kramer-type
coatings that are able to stabilize Tollmien-Schlichting instabilities that would
grow in the presence of a rigid surface.

In this paper, we use as the mitial condition for our calculations a
Tollmien—-Schlichting wave that is known to be unstable, super-imposed on a
Blasius boundary layer. Initially, the interface between the fluid and the solid is flat,
and the velocity on the interface is zero (Fig. 1). The growth rate of the wave 1s
calculated over a certain length of time, and this growth rate, as well as the phase
shift between the Tollmien—Schlichting wave and the resulting wave in the com-
pliant coating, are examined and compared for a variety of materials. All of our
calculations are done using a Reynolds number of 1000 based on the displacement
thickness d*, where 0* is equal to 1.72, and a Tollmen-Schlichting wave of
wavenumber « equal to 0.225, where « has been made dimensionless by multiplying
by 0* This wave represents the most unstable mode of the Orr-Sommerfeld
equation for the given Reynolds number. In the presence of the rigid wall, the
growth rate of the wave is calculated to be 0.0144 after 2000 time steps of 0.005 s.
The growth rate predicted by linear theory 1s between 0.014 and 0.015 [15]. The
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initial velocity field in the fluid, consisting of the Tollmien—Schlichting wave and the
underlying Blasius flow, is calculated using an Orr-Sommerfeld solver similar to
that used by McMurray ez al. [20] for their “smart-wall” calculations, done using
the pseudospectral code originally developed by Orszag and Kells [31].

In the results that follow, we find that certain comphant materials do indeed have
the capability of stabilizing the Tollmien-Schlichting wave. It should be noted,
however, that the Tollmien—Schlichting type instability, which arises in the presence
of a rigid surface as well as in the presence of a compliant surface, is one of three
types of instabilities that arise in the presence of a compliant surface. These three
instabilities were classified by Benjamin [24,25] and consist of the
Tollmien—Schlichting 1nstability, which 1s destabilized by damping, a surface wave
instability similar to that induced by wind over water, which is stabilized by dam-
ping, and the Kelvin—Helmholtz instability [26]. As Benjamin [25] points out, it
might be useless to employ a compliant coating that inhibits one type of instability
but not another. These results therefore represent only a part of the information
that would be required before a decision could be made as to what the effect of a
compliant coating would be on skin-friction drag.

2. COUPLING OF THE FLUID AND SoLID EQUATIONS

The equations of motion for the flow field are the incompressible Navier-Stokes
equation written in rotational form

ov(x, 1)

PP v(x, ) x o(x, 1) — Vr(x, t) + vW(x, 1) (2.1)
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together with the continuity equation
V.v(x, 1)=0, (2.2)

where v(x, )= (u, w), Xx=(x, z), ®(x, 1)=Vxv(x, ), n(x, )= p(x, t)+iv(x, 1)|?
and v is the kinematic viscosity. Periodic boundary conditions are imposed in the
streamwise direction, enabling us to express the velocity field as a truncated Fourier
series 1n x. At the interface between the fluid and the solid, we impose a linearized
Dirichlet boundary condition. This linearization restricts us to examining small
displacements of the wall. Since the component of wall motion 1n the streamwise
direction is very much smaller than that in the direction normal to the flow, a
further simplification involves neglecting the advective term in the boundary
condition. We will denote by 5 the displacement of the wall in the direction normal
to the wall, and we will use the subscript fe to identify quantities calculated by the
finite element code. Then, in particular, the true expression for w 1s given by

Dz 0n on

w2 =y 2L
Dt~ o *ox

(2.3)

however, for all of the materials tested, ug(dn/dx) < dn/dt, and the approximation
w=0n/dt is used. This inequality 1s graphically illustrated for neoprene over soft
polyvinylchloride (PVC) in Fig. 2. To first order in the displacement #,

w(0, y=w(n, t)—n 6—627 w(0, t), (2.4)

and linearizing, we set w(0, t) = w(y, 1)

In the direction normal to the wall, the interval (—1, 1) is mapped to (0, 20),
with about one-third of the Chebyshev collocation points located in the boundary
layer. We will denote by v, the velocity calculated by the finite element code. Thus
at time 7, the boundary condition for the flow field is given by v(x, 0, t) = vi(x, 1, ).
At z=120, v(x, 20, )= (U, 0), the freestream velocity.

The velocity is represented by

v(x, )= Y ﬁ u(m, p, t) exp[2nimx/X] T,(z), (2.5)

lml<Mp=0

where 7,(z) is the Chebyshev polynomial of degree p, defined by T ,(cos 8) = cos p6.
We use 33 Chebyshev modes and 32 Fourier modes for all of our calculations.
The calculation proceeds by first allowing the flow field to develop for a short
time Az, during which a pressure history at the wall 1s generated. Numerical
integration of the Navier-Stokes equation is accomplished in three fractional time
steps. The nonlinear term vx 1s calculated in physical space for the sake of
computational efficiency. That is, v and @ are obtained in spectral space and are
then transformed to physical space, where the cross product is taken. The result is
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transformed back into spectral space, where all time stepping 1s performed. The first
fractional time step is given by

9(;)=v(t)—j'”'vxmdt (2.6)

and 1s performed explicitly using a second-order Adams—Bashforth method.
The second fractional time step is the addition of the pressure term

>

(z)=9(z)—f’”'vn . (2.7)
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To obtain the pressure, we solve the Poisson equation
V=V (vxa)—iV3(|v]?) (2.8)

with periodic boundary conditions in the streamwise direction, and setting p equal
to zero at z =20. At the interface, we want

1
Vnzz[V(t)—vfe(t+At)]+\'V2V(t+At). 2.9)
We have, instead,
Vn=Ait[9(t)~vfe(t+At)]+vV2v(t) (2.10)

and iteration through the pressure and viscous steps is performed at each time step.
This results 1n an implicit pressure correction, after iteration. During the initial
development of the flow field, v,,=0. To avoid oscillation of the pressure in the z
direction, and since the right-hand side of the Poisson equation 1s calculated in
physical space, the equation is solved m physical space in the z direction and
spectral space in x. Uneven grid points exactly match the Chebyshev collocation
points to maintain resolution n the near wall region. The physical pressures are
used as load curves to drive the compliant materal.

The pressure head is transformed to spectral space to complete this fractional
time step. The streamwise component of the velocity is found from the
corresponding momentum equation

ﬁ(t):a(t)—f'm%dt, (2.11)

and the normal component from the continuity equation

du(ry  0w(r)
ax oz

=0. (2.12)

Monitoring of the error in the divergence at each time step was used as a diagnostic
tool in developing the code and during coupled calculations. An increase in this
error near the wall supported the theory that the greatest error was incurred as a
result of the use of a linearized boundary condition.

Finally, the viscous correction

v(;+m)=%(t)+j'“"uv2v dt (2.13)

is done by a fully implicit spectral-tau method. The final velocity at the wall satisfies
V(! + A1) =vg(t + A1) 1n both the normal and tangential components.
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The pressure history generated by the flow calculation is used to drive a com-
pliant matenal for a corresponding length of time. Material response is calculated
by DYNAZ2D, the two-dimensional version of the finite element code developed by
Hallquist [32]. The equations of motion solved by DYNA2D are:

X, oT,. &%
o T o Paa (2.14a)
T, o0X., %z
E\Y=er_(P+q) (214C)
22:=S:z_(P+q), (214d)

where 2, and X' are the total stresses, T, is the shear stress, p is the density, and
S.. and §.. are the stress deviators, which are determined by the visco-elastic
model P is the hydrostatic pressure, and ¢ is the artificial viscosity, given by

1 aV\2 4
— 2.0
g=C?% (-V—a‘t/> > (2.15)

Here, C 1s a constant, p° is the reference density, V is the volume, and A4 1s the
zone area. In addition to these equations we have the continuity equation

18V *x 0%z

—_ —_ 2.1
Ve T axar dzer (2.16)
and the energy equation
CE av O¢ Je,. de..
—_—= - —+V — 4+ S ==+ T ==, 2.17
a - T Prog (S“ ar P T 61) (217)
where the velocity strains are given by
0E 0°x e, 0%z de.. 0% 0%
e Ee_ == — 2.18
ar axar oz @1 oxdi azan (218)
The equation of state 1s
P=—kinV, (2.19)

where k is the bulk modulus of the materal.

For a linear visco-elastic material, input parameters to DYNA2D include the
density, bulk modulus, short-time shear modulus G,, long-time shear modulus G,
and the decay constant, B.. The last three parameters define the shear relaxation
behavior as follows:

G(1)=Gy +(Go— G ) e M, (2.20)
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In our calculations, the bottom surface of the material is rigid, and the sides are
constrained to move together, to provide the periodic interface velocities that are
consistent with the fluid calculation. The pressure loading is applied at the interface,
and water elements are placed above this interface to account for the mass of the
water sitting over the material. A discussion of the effect of this added mass can be
found in Reference [16]. The height of these elements 1s chosen so as to result 1n a
free surface at the top that does not respond to material displacements.

The coupling algorithm begins, as stated above, with the fluid code marching
from time zero to some time A¢, and writing a pressure history. A pressure loading
curve is thus provided to drive the finite element code from =0 to t= A4 The
finite element code now runs from zero to 4¢, and calculates values of the velocity
at nodal points on the interface at time A4+ The explicit finite element code takes a
time step that is smaller by approximately an order of magnitude than that taken
by the fluid code. For this reason the finite element code sub-cycles within time Ar,
and first-order interpolation is used to obtain the necessary boundary pressures. In
using the velocities resulting from this calculation as a boundary condition for the
pressure routine and for the spectral-tau viscous calculation, interface velocities are
transformed to Fourier space. The fluid code now runs from r=0 to 1= 24, with
v =y, at the interface at time A1, and then from 1= Ar to t = 24¢ with, as an initial
estimate, v at the interface decaying smoothly A pressure history is written for the
interval 4r< <24, which drives the solid during the subsequent finite element
calculation. Coupling of the two codes proceeds with iteration of the flow
calculation over each time interval.

This marching scheme is algorithmically equivalent to one code solving the
appropriate equations in two connected blocks of mesh. Block one consists of the
fluid, and as a first approximation the interface is assumed to be flat. Block two, the
solid, is then given boundary data resulting from the calculation in block one, and
the solid equations are solved over the same time interval. The code then repeats
calculation of the first block, with the new nterface velocities as corrected data.
After this, the code restarts at time A4¢, with smoothly decaying velocities as the first
approximation of the interface boundary condition for the interval 4r <1 <241

To summarize some of the features of the numerical method, the flow field is
represented by a truncated Fourier series in x and a truncated Chebyshev series in
=. A pseudospectral method is used to calculate the nonlinear and pressure terms,
and a spectral-tau method is used for the viscous correction. The pressure
calculation is done by finite difference, with the unevenly spaced grid retaining the
boundary layer resolution obtained by using a Chebyshev expansion in z. The
calculations presented below were done using 32 modes in x (M =16) and 33
modes in z (P=32). The fluid code requires about 1 5 ms per mode per time step
on a CRAY-1 computer.

The finite element calculation 1s formally second-order accurate both spatially
and temporally. Typical calculations were done using 256 four-node elements,
requiring 297 nodal points. The code runs in about 17 ms per nodal point per time
step on a CRAY-1 computer.
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3. RESULTS

The first material examined with the coupled calculation was a 2.5 cm thick layer
of a soft polyvinylchloride (PVC). This nearly incompressible gelatinous material
was used in the noninteractive numerical calculation of material response done by
Buckingham er al. [16], and in the experimental study of surface instability done
by Gad-el-Hak [11]. The material parameters required by the DYNA2D code were
the material density, the bulk modulus, the short and long term shear moduli G,
and G, and the decay constant, §. TableI lists these values for this and other
materials used in our calculations. The shear modulus G(r) of the material is
modeled by

G(1)=G .+ (Gy—G)e ™ (3.1)

After ten coupled time intervals, a footprint of the Tollmien—Schlichting wave can
be seen 1n the polyvinylchloride. The displacements from the initial state are shown
in Fig. 3. These displacements are scaled by a factor of fifty to make the wave
clearly visible. The ratio of the actual amplitude of the displacement to the
wavelength 1s approximately 0.001, and is small enough both to ensure that the
flow will not separate and to make the use of linearized boundary conditions in the
fluid calculation feasible (cf. Benjamin [33] and Miles [34]). The displacements
are not scaled in Fig. 4, which shows the actual configuration of the PVC after 40
coupled time intervals. Displacements in the PVC are now great enough to cause
separation of the flow from the surface and order-one error in the solution of the
Navier-Stokes equation due to the boundary conditions, and the calculation was
stopped at this point. This displacement corresponds to an increase in the energy
contained in the Tollmien-Schlichting wave equal to two orders of magnitude and,
at the final time, the growth rate of the disturbance 1s 90 times the growth rate in
the presence of the rigid wall. The gnd is being advected along with the
Tollmien-Schlichting wave, and a phase lag of approximately one tenth of a
wavelength is noticeable in this soft material. The phase shift seen here can be inter-
preted as a “quasi-sheltering” of the wave, using the terminology of Benjamin [33],
where by “sheltered,” it is implied that the pressure 1s lower on the leeward side of

TABLE I

Material Parameters Used in Fimte Element Calculation of Matenial Response

Soft PVC Suff PVC Neoprene
Density (kg/m?3) 1025 1025 1320
Bulk Modulus (Pa) 775x% 107 775% 107 343 x10°
Short time shear modulus (Pa) 243 274 x 10* 976 x 10°
Long time shear modulus (Pa) 770 10 x10* 350 % 10¢

Decay constant (s —!) 600 120 135
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Fic 3 Response of the soft polyvinylchloride to pressures induced on the surface by the
Tollmien-Schlichting wave, after ten coupled time intervals The displacements are scaled by a factor of

fifty The broken line irdicates the original location of the undisturbed interface
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Fic 4 The actual shape of the soft PVC after 40 coupled time intervals The broken line indicates

the imtial footprint of the Tollmien-Schlichting wave, as 1s tllustrated in Fig 3

FiG 5 The shape of the suff PVC after 40 coupled time intervals The displacements are scaled by a

factor of 2000
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the wave due to separation of the flow from the surface [3S5, 36]. Quasi-sheltering
occurs when there is no separation of the flow [37]. The highly unstable response
of this soft PVC prevented further calculation.

We next performed the same calculation using 2.5cm of a stiffer
polyvinylchloride. After ten coupled time intervals, we again see a footprint of the
fluctuation 1n the solid. However, the amplitude of the displacement 1s roughly 5%
of that seen in the softer material. After 40 coupled time intervals, comparison of
the displacement in the solid with that in the softer material shows that the distur-
bance has attained only 0.05 % of the amplitude obtained by the soft PVC. The dis-
placement 1s scaled by a factor of two thousand in Fig. 5. The wave 1n the surface,
rather than lagging behind the disturbance in the flow field, 1s seen to be somewhat
downstream of 1t, with the phase shift being equal to approximately one-twelfth of
the wavelength. In Fig. 6, we have superimposed Fig. 5 on the initial footprint of
the Tollmien—Schlichting wave (Fig. 3) to illustrate this phase difference. As the
calculation continues, the wave gradually slows in both phase shift and growth. The
calculation was stopped after one hundred coupled intervals, at which time the
wave amplitude and the phase shift have stablized. Figure 7 depicts the final state
attained by the stiff PVC. The displacements are scaled by a factor of one thousand.

The final material tested was a 2.5 cm thick layer of soft PVC covered by a
0.25cm layer of rubber-ike neoprene. We again see a footprint of the
Tollmien-Schlichting wave in the material after ten coupled intervals. The dis-
placement, while roughly an order of magnitude smaller than that in the soft PVC
alone, is twice as great as that in the stiffer material. This material configuration
was chosen after the uncoupled numerical study of Buckingham et al. [16]
suggested that the combination of neoprene over PVC might be a promising can-
didate for reducing drag. This suggestion was based on an examination of the
amplitude and frequency response of the material to random pressure fluctuations
modeling a turbulent flow. However, our coupled results indicate that the material
permits rapid growth of the Tollmien-Schlichting instability, indicating that the
boundary layer 1s linearly unstable at lower Reynolds numbers than for the case of
a rigid wall. In Fig. 8, displacements are scaled by a factor of ten. Comparing this
with Fig 4, in which displacements are not scaled, shows that while the amplitude
of the disturbance remains an order of magnitude smaller than that seen in the soft
PVC alone, the added neoprene has had no effect on the phase lag. Possibly as a
consequence. after 40 coupled time steps, the growth rate of the Tollmien-
Schlichting wave is again 90 times that of the wave 1n the presence of a rigid wall.

To summarize our results, three coatings were tested in this study; a 2.5 cm thick
layer of soft polyvinylchloride (PVC), a layer of a stiffer PVC of the same thickness,
and a 2.5 cm thick layer of soft PVC covered by a 0.25 cm layer of neoprene. The
unforced response of these materials to surface pressure was calculated. with par-
ticular attention being paid to phase shift, amplitude, and growth rate of the
resulting disturbance. In turn, the effect of material response on the flow field in
which the disturbance originated was examined All flow calculations were done at
a Reynolds number based on a displacement thickness of 1000. The wave in the soft
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Fic 6 Figure 5 superimposed on the iniual footprint of the Tollmen—-Schlichting wave, showing the
phase shift 1n the matenal disturbance after 40 coupled time intervals
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FiG 7 The final state attamned by the suff polyvinylchloride before couphng was discontinued
Displacements are scaled by a factor of 1000 The broken line indicates the imitial footprint of the

Tollmien—Schlichting wave
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Fic 8 Soft PVC, covered by a thin layer of neoprene after 40 coupled time steps Displacements are
scaled by a factor of 10 The broken line indicates the imtial footprint of the Tollmien-Schlichting wave
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PVC that resulted from a single Tollmien—-Schlichting wave superimposed on a
boundary layer flow profile was seen to lag behind the wave in the flow. After 40
coupled time steps, the disturbance was growing rapidly, and the calculation was
discontinued when the linearized boundary condition was no longer adequate.
Coating this material with a thin layer of neoprene controlled the amplitude of the
response but had no effect on the phase lag. After 40 coupled time steps, the wave
was again seen to be growing rapidly. The firm PVC, on the other hand, developed
a wave that was shifted slightly downstream of the Tollmien—Schlichting wave and
attained a steady state.
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