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The response of a comphant coatmg to pressure fluctuattons due to an unsteady boundary 
layer flow and the effect of the response on the stabthty of the flow field are exammed A 
pseudospectral solutton of the Navter-Stokes equattons IS coupled to a timte element 
calculatton of the behavtor of the comphant maternal In parttcular, the effect of maternal 
response on the growth rate of a Tollmten-Schhchtmg type mstabtltty tn an unstable boun- 
dary layer IS exammed Results are presented for three materials, a soft polyvmylchlortde 
(PVC), a sttffer PVC, and a two-layer maternal conststmg of a thick layer of soft PVC covered 
by a thm layer of neoprene ‘( 1988 Academx Press. Inc 

INTRODUCTION 

A numerical method for studymg the interaction between an unstable boundary 
layer flow and a compliant surface is consrdered here Since Kramer first 
demonstrated a reduction in the skin-friction drag on an underwater vessel due to 
interactron of the surroundmg fluid with a compliant coating, this interaction has 
been investigated theoretically, experimentally, and computationally. Originally 
inspired by observations of the swimming efficiency of dolphms [ 1,2], Kramer’s 
experiments [3-51 did indeed result in significant reduction of the drag on towed 
cylinders. Two possible mechanisms for this reduction in drag have since been 
suggested. The compliant material might interact with a fully developed turbulent 
boundary layer in such a way as to reduce the intensity of the turbulence, or the 
maternal might interact with a lammar boundary layer m such a way as to delay the 
transition to turbulence 

To date, most of the experimental work has focused on the turbulent interaction, 
with primarily negative results. This is true of studies done using coatings similar to 
those developed by Kramer [6-93 as well as studies done using simpler single or 
double-layer coatings [l&14]. A revrew of the experimental work prior to 1984 has 
been presented by Gad-el-Hak et al. [ 1 l] and in the paper by Carpenter and 
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Garrad [ 151, which contains a further discussion of Kramer’s experiments and of 
attempts to duplicate Kramer’s experiments. 

Much of the numerical work that has been done has also focused on the mterac- 
tion between a compliant coating and a fully developed turbulent flow. These 
investigations have included both noninteractive studies of material response, and 
quasi-interactive attempts to anticipate the response of a membrane or Voigt solid 
and couple the resulting velocities back mto the flow field. Buckingham et al. [16] 
calculated the response of a variety of materials to Monte-Carlo generated random 
pressure fields, without considering the effect of the resultant interface displace- 
ments and velocities on the flow field. This work, which makes use of a turbulent 
wall pressure model developed by Ash [ 171 and Ash and Khorrami [ 181, provtdes 
a numerical counterpart to the theory first published by Phillips [19] on the 
generation of water waves by a random pressure fluctuation. Such an approach has 
two advantages: complex multi-layered and mternally structured coatings can be 
characterized in terms of amplitude and frequency response, and flow-induced 
pressures are not restricted to those resulting from Tollmien-Schhchting type 
instabilities. On the other hand, material response alone IS not an indicator of the 
ability of a particular coating to reduce the turbulent energy in the surrounding 
flow field. Before such data can be interpreted in terms of drag-reduction 
capabthties, the effects of amplitude, frequency, and phase response on mstabtlities 
or on the turbulent bursting phenomenon must be better understood. Among recent 
attempts to understand these effects are numerical studies that assume a certain 
response of a membrane or Voigt solid and couple this response back into the flow 
field. The “smart-wall” studies by McMurray and Metcalfe [20] and Riley et al. 
[21] have shown the ability of wall motion to transfer energy from higher to lower 
wavenumber modes. In earlier work Orszag [22] computed the velocity profile 
following a turbulent burst assuming a pressure pulse due to the burst. Results were 
shown to depend on the wavelength of the wall motion. 

Recently attention has turned from the interaction of a coating with a fully 
developed turbulent boundary layer to the possibility of delaying transition of the 
boundary layer from laminar to turbulent. Indeed, Kramer believed that this delay 
was responsible for the drag reduction that he was able to achieve. Carpenter and 
Garrad [15] suggest that the failure of later experiments (those with coatings 
similar to Kramer’s) to duplicate Kramer’s results may be due to the unsuitability 
of these experiments for investigating transition. Using a model representing a 
modified potential flow over a single-layer isotropic Voigt material, Duncan, 
Waxman, and Tulin [23] derived analytically a dispersion relation for two- 
dimensional wavetrains on the interface. Although the purpose of their paper was 
to describe the effects of damping on wave propagation and to shed hght on 
experimental results, they did conclude that the onset velocity for Tollmien- 
Schhchting instabilities, classified as class A mstabthties by Benjamin [24], was 
higher for laminar boundary layers than for turbulent ones. 

In this paper, we consider a numerical method for studying the interaction 
between a TollmtenSchhchting wave and a variety of compliant coatings. A 
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pseudospectral solution of the incompressible Navier-Stokes equation is coupled 
through the boundary conditions to a limte element calculatton of the response of a 
linear visco-elastic solid. The pseudospectral solution employed is a time-splitting 
method, with the compliant wall boundary conditions enforced during both the 
pressure and viscous steps. Since the method does not force conservation of mass, 
errors introduced in the near-wall region due to the time-splitting quickly become 
evident m calculation of the divergence. Iteration of both the pressure and vtscous 
corrections, as described below, is used to minimize this error. We believe that this 
method can be useful m the study of flow over a greater variety of material 
configurations than can be easily modeled analytically 

1. INITIAL CONDITIONS 

Transition will be delayed if the compliant coating can m effect raise the crittcal 
Reynolds number of the boundary layer flow. This corresponds to a shifting of the 
neutral stability curve of the Orr-Sommerfeld equation, describing the evolution of 
a small disturbance (a Tollmien-Schlichting wave) in the flow. The shift in the 
neutral stability curve due to a compliant coating was calculated analytically by 
Benjamin [25] using a single parameter, which he called the response coefficient, to 
represent the properties of the compliant material. Stability curves were calculated 
numerically by Landahl [26], Kaplan [27], and by Landahl and Kaplan [28] for 
a spring-backed membrane with damping. In addition to reproducing the results of 
Kaplan and Landahl and Kaplan, Garrad [29] and Carpenter and Garrad [ 151 
have used this method to examine the stability properties of Kramer-type coatings. 
They modeled a Kramer-type surface as an elastic plate backed by a viscous fluid 
and supported by springs, which were m turn modeled by an elastic foundation (see 
also Ref. [30]). Their results indicate that there may indeed be Kramer-type 
coatings that are able to stabilize Tollmien-Schlichting instabilities that would 
grow in the presence of a rigid surface. 

In this paper, we use as the initial condition for our calculations a 
Tollmien-Schlichting wave that is known to be unstable, super-imposed on a 
Blasius boundary layer. Initially, the interface between the fluid and the solid is flat, 
and the velocity on the mterface is zero (Fig. 1). The growth rate of the wave IS 
calculated over a certain length of time, and this growth rate, as well as the phase 
shift between the Tollmien-Schhchting wave and the resulting wave in the com- 
pliant coating, are examined and compared for a variety of materials. All of our 
calculations are done using a Reynolds number of 1000 based on the displacement 
thickness S*, where 6* is equal to 1.72, and a Tollmten-Schlichting wave of 
wavenumber a equal to 0.225, where a has been made dimensionless by multiplying 
by S*. This wave represents the most unstable mode of the Orr-Sommerfeld 
equation for the given Reynolds number. In the presence of the rigid wall, the 
growth rate of the wave is calculated to be 0.0144 after 2000 time steps of 0.005 s. 
The growth rate predicted by linear theory IS between 0.014 and 0.015 [15]. The 
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FIG 1 Coupled mtegratlon domam 

initial velocity field in the fluid, consisting of the Tollmien-Schlichting wave and the 
underlying Blasius flow, is calculated using an Orr-Sommerfeld solver similar to 
that used by McMurray et al. [ZO] for their “smart-wall” calculations, done using 
the pseudospectral code originally developed by Orszag and Kells [31]. 

In the results that follow, we find that certain compliant materials do indeed have 
the capability of stabilizing the TollmienSchlichting wave. It should be noted, 
however, that the Tollmien-Schlichting type instability, which arises in the presence 
of a rigid surface as well as in the presence of a compliant surface, is one of three 
types of instabilities that arise in the presence of a compliant surface. These three 
instabilities were classified by Benjamin [24,25] and consist of the 
Tollmien-Schhchting mstability, which IS destabilized by damping, a surface wave 
instability similar to that induced by wind over water, which is stabilized by dam- 
ping, and the Kelvin-Helmholtz instability [26]. As Benjamin [25] points out, it 
might be useless to employ a compliant coating that inhibits one type of instability 
but not another. These results therefore represent only a part of the information 
that would be required before a decision could be made as to what the effect of a 
compliant coatmg would be on skin-friction drag. 

2. COUPLING OF THE FL~JID AND SOLID EQUATIONS 

The equations of motion for the flow field are the incompressible Navier-Stokes 
equation written in rotational form 

wx, 2) -= v(x, f) x w(x, t) - V?r(x, t) + vV2v(x, t) at (2-l) 
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together with the continuity equatton 

v .v(x, t)=O, (2.2) 

where v(x, r)=(u, u’), X=(.X, z), o(x, t)=Vxv(x, t), x(x, t)=p(x, r)+flv(x, r)j2, 
and 1’ is the kinemattc viscosity. Periodic boundary conditions are imposed in the 
streamwise direction, enabling us to express the velocity field as a truncated Fourier 
series u-r X. At the interface between the fluid and the solid, we impose a lmearized 
Dirichlet boundary condition. Thts lmeartzation restrtcts us to examining small 
displacements of the wall. Since the component of wall motion m the streamwise 
direction is very much smaller than that in the direction normal to the flow, a 
further simplification involves neglecting the advecttve term in the boundary 
condmon. We will denote by 7 the displacement of the wall in the direction normal 
to the wall, and we ~111 use the subscript fe to identify quantities calculated by the 
finite element code. Then, in particular, the true expression for H’ 1s given by 

(2.3 1 

however, for all of the materials tested, u,(aq/&u) 4 aq/~~Yt, and the approximation 
M’= aq/itt is used. This inequality 1s graphically illustrated for neoprene over soft 
polyvinylchloride (PVC) m Fig. 2. To first order m the displacement q, 

M’(0, t) = w(rj, t) - g 2 w(0, 2). 
drl 

(2.4) 

and linearizing, we set ~(0, t) = u(g, t) 
In the direction normal to the wall, the interval (- 1, 1) is mapped to (0, 20), 

with about one-third of the Chebyshev collocation points located m the boundary 
layer. We will denote by vfe the velocity calculated by the finite element code. Thus 
at time t, the boundary condition for the flow field is given by v(x, 0, t) = v,(x, yl, t). 
At z = 20, v(x, 20, t) = (U, 0), the freestream velocity. 

The velocity is represented by 

v(x, t) = C i u(m, p, t) exp[2rrim.x/X] T,(z), 
lrnl < 4f p=o 

(2.5) 

where T,(Z) is the Chebyshev polynomial of degree p, defined by T,(cos 0) = cos pe. 
We use 33 Chebyshev modes and 32 Fourier modes for all of our calculations. 

The calculatton proceeds by first allowing the flow field to develop for a short 
time At, during which a pressure history at the wall 1s generated. Numerical 
integration of the Navier-Stokes equation is accomplished in three fractional time 
steps. The nonlinear term v x o IS calculated in physical space for the sake of 
computational efficiency. That is, v and o are obtained in spectral space and are 
then transformed to physical space, where the cross product is taken. The result is 
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FIG 2 Vector plots of the displacement and velocity m neoprene over soft PVC 

transformed back into spectral space, where all time stepping IS performed. The first 
fractional time step is given by 

i(r)=v(r)-/‘+‘I’vxwdf 
I (2.6) 

and 1s performed explicitly using a second-order Adams-Bashforth method. 
The second fractional time step is the addition of the pressure term 

$(r)=i(r)-j-‘+“Vndr. 
I (2.7) 
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To obtain the pressure, we solve the Porsson equation 

v2p=v.(vxo)-~v2(~v~2) (2.8) 

wrth periodic boundary conditions m the streamwise direction, and setting p equal 
to zero at z = 20. At the Interface, we want 

Vrr=~[l(r)-v,(t+dt)]+rv2v(t+dl). (2.9) 

We have, instead, 

ml=; [t(t)-v,(t+dt)] +vV2v(t) (2.10) 

and iteration through the pressure and viscous steps is performed at each time step. 
This results m an implicit pressure correction, after iteration. During the initial 
development of the flow field, vg = 0. To avoid oscillatton of the pressure in the z 
directron, and since the right-hand side of the Poisson equation 1s calculated in 
physical space, the equation is solved m physical space in the I direction and 
spectral space in X. Uneven grid points exactly match the Chebyshev collocation 
pomts to maintain resolution m the near wall region. The physical pressures are 
used as load curves to drive the compliant material. 

The pressure head is transformed to spectral space to complete this fractional 
time step. The streamwrse component of the velocity is found from the 
corresponding momentum equation 

and the normal component from the contmurty equation 

(2.11) 

(2.12) 

Monitoring of the error in the divergence at each time step was used as a dragnostrc 
tool in developing the code and during coupled calculations. An increase in thus 
error near the wall supported the theory that the greatest error was incurred as a 
result of the use of a linearized boundary condition. 

Finally, the viscous correction 

V(I+df)=:(r)+5:+~‘“v2v~~ (2.13) 

is done by a fully rmplicrt spectral-tau method. The final velocity at the wall satisfies 
v( t + dr) = vre(l + dt) m both the normal and tangential components. 
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The pressure history generated by the flow calculatton is used to drive a com- 
pliant materral for a corresponding length of time. Material response is calculated 
by DYNA2D, the two-dimensional version of the finite element code developed by 
Hallquist [32]. The equations of motion solved by DYNA2D are: 

a.E dT _ d=x 2+--L 
ax a, =pz 

ST _ d.Z-. iY2z --lr+; 
ax a,- = p dr2 

(2.14a) 

(2.14b) 

C,,=L-(P+q) (2.14~) 

z;;=s;;-(P+q), (2.14d) 

where Z,, and ,?I== are the total stresses, TX, is the shear stress, p is the densrty, and 
S,, and SZZ are the stress deviators, which are determined by the visco-elastic 
model P is the hydrostatic pressure, and q is the artificial viscosity, given by 

(2.15) 

Here, C 1s a constant, p” is the reference density, V is the volume, and A 1s the 
zone area. In addition to these equations we have the continmty equation 

1 dV ii=x s*z --=- - 
vat axat+azat’ 

(2.16) 

and the energy equation 

C?E 
z= -(P+q)g+ V(S,,+‘+s;$=+ T,+ 

> 
, (2.17) 

where the veloctty strams are given by 

aE,, azx 
at =z? 

aEzz _ a3 a&,; alz ah 
at3Xirt; at 

-- - 
hat+aZai (2.18) 

The equation of state 1s 

P= -kin V, (2.19) 

where k is the bulk modulus of the maternal. 
For a linear vtsco-elastic material, input parameters to DYNA2D include the 

density, bulk modulus, short-time shear modulus Go, long-time shear modulus G, , 
and the decay constant, /II,. The last three parameters define the shear relaxation 
behavior as follows: 

G(t)=G,+(G,-G,)e-Dr.‘. (2.20) 
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In our calculations, the bottom surface of the material is rtgid, and the stdes are 
constrained to move together, to provide the periodic interface velocities that are 
consistent with the fluid calculatton. The pressure loading is applied at the interface, 
and water elements are placed above this interface to account for the mass of the 
water sitting over the material. A discussion of the effect of this added mass can be 
found in Reference [ 161. The height of these elements IS chosen so as to result m a 
free surface at the top that does not respond to material displacements. 

The coupling algorithm begins, as stated above, with the fluid code marching 
from time zero to some time At, and writing a pressure history. A pressure loading 
curve is thus provided to drive the finite element code from t = 0 to t = At The 
lirute element code now runs from zero to At, and calculates values of the velocity 
at nodal points on the interface at time At The explicit finite element code takes a 
time step that is smaller by approximately an order of magnitude than that taken 
by the fluid code. For this reason the fimte element code sub-cycles within time At, 
and first-order interpolation is used to obtain the necessary boundary pressures. In 
using the velocities resulting from this calculation as a boundary condition for the 
pressure routine and for the spectral-tau viscous calculation, interface velocittes are 
transformed to Fourier space. The fluid code now runs from t = 0 to r = ZAt, with 
v = vre at the interface at time At, and then from t = At to I = 2Ar wtth, as an initial 
estimate, v at the interface decaying smoothly A pressure history is written for the 
interval At 6 t< 2At, which drives the solid during the subsequent finite element 
calculation. Coupling of the two codes proceeds with iteration of the flow 
calculation over each time interval. 

This marching scheme is algorithmtcally equivalent to one code solving the 
appropriate equations in two connected blocks of mesh. Block one consists of the 
fluid, and as a first approximation the interface is assumed to be flat. Block two, the 
solid, is then gtven boundary data resulting from the calculation m block one, and 
the solid equations are solved over the same time interval. The code then repeats 
calculation of the first block, wtth the new Interface veloctties as corrected data. 
After this, the code restarts at time At, with smoothly decaying velocities as the first 
approximation of the interface boundary condition for the Interval At < r < 2At. 

To summarize some of the features of the numerical method, the flow field is 
represented by a truncated Fourier series in x and a truncated Chebyshev series m 
z. A pseudospectral method is used to calculate the nonlinear and pressure terms, 
and a spectral-tau method is used for the viscous correction. The pressure 
calculation is done by tirute difference, with the unevenly spaced grid retaining the 
boundary layer resolution obtained by usmg a Chebyshev expanston m Z. The 
calculations presented below were done using 32 modes in x (M= 16) and 33 
modes in z (P = 32). The fluid code requires about 1 5 ms per mode per time step 
on a CRAY-1 computer. 

The fimte element calculation IS formally second-order accurate both spatially 
and temporally. Typical calculations were done using 256 four-node elements, 
requiring 297 nodal points. The code runs in about 17 ms per nodal point per time 
step on a CRAY-I computer. 
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3. RESULTS 

The first material examined with the coupled calculation was a 2.5 cm thick layer 
of a soft polyvinylchloride (PVC). This nearly incompressible gelatinous material 
was used in the noninteractive numerical calculatton of material response done by 
Buckingham et al. [16], and in the experimental study of surface instability done 
by Gad-el-Hak [ 111. The material parameters required by the DYNA2D code were 
the material density, the bulk modulus, the short and long term shear moduli G, 
and G,, and the decay constant, /?. Table I lists these values for this and other 
materials used in our calculations. The shear modulus G(r) of the material is 
modeled by 

G(t)=G,+(G,-G,)epB’. (3.1) 

After ten coupled time intervals, a footprint of the Tollmien-Schlichting wave can 
be seen m the polyvinylchlorrde. The displacements from the imtial state are shown 
m Fig. 3. These displacements are scaled by a factor of fifty to make the wave 
clearly visible. The ratio of the actual amplitude of the displacement to the 
wavelength IS approximately 0.001, and is small enough both to ensure that the 
flow will not separate and to make the use of linearized boundary conditions in the 
fluid calculation feasible (cf. Benjamin [33] and Miles 1341). The displacements 
are not scaled m Fig. 4, which shows the actual configuratton of the PVC after 40 
coupled ttme intervals. Displacements in the PVC are now great enough to cause 
separation of the flow from the surface and order-one error m the solution of the 
Navrer-Stokes equation due to the boundary conditions, and the calculation was 
stopped at this point. This displacement corresponds to an increase in the energy 
contained in the Tollmien-Schlichting wave equal to two orders of magnitude and, 
at the final time, the growth rate of the disturbance 1s 90 times the growth rate in 
the presence of the rigid wall. The grid is bemg advected along with the 
TollmrenSchhchting wave, and a phase lag of approximately one tenth of a 
wavelength is noticeable in this soft material. The phase shift seen here can be inter- 
preted as a “quasi-sheltering” of the wave, using the terminology of Benjamin [33], 
where by “sheltered,” it is implied that the pressure IS lower on the leeward side of 

TABLE I 

Material Parameters Used m Fnute Element Calculation of Material Response 

Soft PVC stdl- PVC Neoprene 

Density (kg/m’) 1025 1025 I320 
Bulk Modulus (Pa) 7 75 x 10’ 175 x 10’ 3 43 x 109 
Short time shear modulus (Pa) 243 2 74 x I04 9 76 x IO6 
Long time shear modulus (Pa) 7 70 10 x to4 3 50 x lo6 
Decay constant (SK’) 600 120 I35 
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FIG 3 Response of the soft polyvmylchlorlde to pressures Induced on the surface by the 
Tollmlen-Schhchtmg wave, after ten coupled time Intervals The dtsplacements are scaled by a factor of 
tifty The broken hne Ir.dlcates the origmal locatlon of the undisturbed Interface 

FIG 4 The actual shape of the soft PVC after 40 coupled time Intervals The broken hne mdxates 
the uutlal footprmt of the TollmIen-Schhchtmg wave, as IS Illustrated m Fig 3 

FIG 5 The shape of the sttfi PVC after 40 coupled time intervals The displacements are scaled by a 
factor of 2000 



44 M. S. HALL 

the wave due to separation of the flow from the surface [35, 361. Quasi-sheltering 
occurs when there is no separation of the flow [37]. The highly unstable response 
of this soft PVC prevented further calculation. 

We next performed the same calculation using 2.5 cm of a stiffer 
polyvinylchloride. After ten coupled time intervals, we again see a footprint of the 
fluctuation m the solid. However, the amplitude of the displacement is roughly 5 % 
of that seen in the softer material. After 40 coupled time intervals, comparison of 
the displacement in the solid with that in the softer material shows that the distur- 
bance has attained only 0.05 % of the amplitude obtained by the soft PVC. The dis- 
placement IS scaled by a factor of two thousand in Fig. 5. The wave m the surface, 
rather than lagging behind the disturbance in the flow field, is seen to be somewhat 
downstream of it, with the phase shift bemg equal to approximately one-twelfth of 
the wavelength. In Fig. 6, we have superimposed Fig. 5 on the initial footprint of 
the Tollmien-Schlichtmg wave (Fig. 3) to illustrate this phase difference. As the 
calculation contmues, the wave gradually slows in both phase shift and growth. The 
calculation was stopped after one hundred coupled intervals, at which time the 
wave amplitude and the phase shift have stablized. Figure 7 depicts the final state 
attained by the stiff PVC. The displacements are scaled by a factor of one thousand. 

The final material tested was a 2.5 cm thick layer of soft PVC covered by a 
0.25 cm layer of rubber-like neoprene. We again see a footprint of the 
Tollmien-Schhchtmg wave in the material after ten coupled intervals. The dis- 
placement, while roughly an order of magnitude smaller than that m the soft PVC 
alone, is twice as great as that m the stiffer material. This material configuration 
was chosen after the uncoupled numerical study of Buckmgham et al. [16] 
suggested that the combmation of neoprene over PVC might be a promising can- 
didate for reducing drag. This suggestion was based on an examination of the 
amplitude and frequency response of the material to random pressure fluctuations 
modeling a turbulent flow. However, our coupled results Indicate that the material 
permits rapid growth of the Tollmien-Schlichting instability, indicating that the 
boundary layer IS linearly unstable at lower Reynolds numbers than for the case of 
a rigid wall. In Fig. 8, displacements are scaled by a factor of ten. Comparmg this 
with Fig 4, in which displacements are not scaled, shows that while the amplitude 
of the disturbance remams an order of magmtude smaller than that seen in the soft 
PVC alone, the added neoprene has had no effect on the phase lag. Possibly as a 
consequence. after 40 coupled time steps, the growth rate of the Tollmien- 
Schlichting wave is again 90 times that of the wave m the presence of a rigid wall. 

To summarize our results, three coatings were tested in this study; a 2.5 cm thick 
layer of soft polyvmylchloride (PVC), a layer of a stiffer PVC of the same thickness, 
and a 2.5 cm thick layer of soft PVC covered by a 0.25 cm layer of neoprene. The 
unforced response of these materials to surface pressure was calculated. with par- 
ticular attention being paid to phase shift, amplitude, and growth rate of the 
resulting disturbance. In turn, the effect of material response on the flow field in 
which the disturbance originated was examined All flow calculations were done at 
a Reynolds number based on a displacement thickness of 1000. The wave in the soft 
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FIG 6 Ftgure 5 superimposed on the mmal footprmt of the TollmIen-Schhchtmg wave, showmg the 
phase shaft m the material disturbance after 40 coupled time Intervals 

__-_m------_ 
L 

FIG 7 The final state attamed by the stlfl polyvmylchlorlde before couphng was dlscontmued 
Displacements are scaled by a factor of 1000 The broken hne mdlcates the mltlal footprmt of the 
TollmIen-Schhchtmg wave 

FIG 8 Soft PVC, covered by a thm layer of neoprene after 40 coupled time steps Displacements are 
scaled by a factor of 10 The broken hne mdlcates the mltlal footprmt of the TollmIen-Schhchtmg wave 
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PVC that resulted from a smgle Tollmien-Schhchting wave superimposed on a 
boundary layer flow profile was seen to lag behind the wave in the flow. After 40 
coupled time steps, the disturbance was growing rapidly, and the calculation was 
discontinued when the linearized boundary condition was no longer adequate. 
Coating this material with a thin layer of neoprene controlled the amplitude of the 
response but had no effect on the phase lag. After 40 coupled time steps, the wave 
was again seen to be growing rapidly. The firm PVC, on the other hand, developed 
a wave that was shifted slightly downstream of the Tollmien-Schlichting wave and 
attained a steady state. 
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